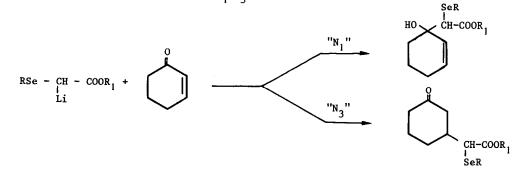
CONTROLLED REGIOSPECIFIC ADDITION OF 1-LITHIO 1-SELENO ACETATES TO  $\alpha, \beta$ -UNSATURATED KETONES

J. Luchetti and A. Krief <sup>(★)</sup>

Facultés Universitaires N.D. de la Paix Department of Chemistry 61, rue de Bruxelles, B-5000 - Namur (Belgium)

(Received in UK 22 May 1978; accepted for publication 25 May 1978)


Numerous reports deal with the reactions of "carbanions" with  $\alpha,\beta$ -unsaturated ketones. Sometimes, both 1-2 and 1-4 additions are simultaneously observed. Sometimes control of the regioselectivity was achieved by proper choice of experimental conditions <sup>1</sup>. Of course, the nature of the carbanion <sup>2</sup> and the counterion <sup>3</sup>, the structure of the carbonyl <sup>4</sup> compound and the solvent choice <sup>5</sup> have been accounted for the specificity sometimes observed. The specificity has been discussed in terms of frontier orbitals <sup>4</sup> or in terms of chelation of the metal with the carbonyl group <sup>6</sup> which allows the proximity of the carbanionic center near

the  $C_1$  (N<sub>1</sub> reactivity)<sup>7</sup> or the  $C_3$  (N<sub>3</sub> reactivity)<sup>7</sup> center of the unsaturated system.

We present here our preliminary results for the reaction of 1-selenoalkyl (or phenyl) 1-lithio acetates with cyclohexenone.

We found that these derivatives add kinetically 1-2 to cyclohexenone in THF at -78°C  $(N_1/N_3: 95/5)$  (method A)<sup>9a</sup>. These results have been observed even after 6 hrs of reaction at this temperature.

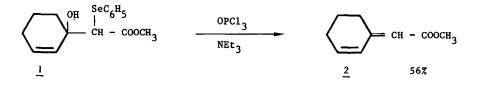
We also found that the lithio alcoholate can be transformed to the more stable 1-4 adduct by simply rising the temperature to 25°C for only one hour  $(N_1/N_3 : 5/95)^{10b}$  or by addition of HMPT to the medium at -78°C  $(N_1/N_3 : 20/80)$ . Higher specificity was also observed in the later case when the reaction is conducted for the same time but at higher temperature (-45°C)  $(N_1/N_3 : 5/95)^{10a}$ . Similar results were obtained if the reaction is directly performed in THF-HMPT at -78°C  $(N_1/N_3 : 20/80)$  (method B)<sup>9b</sup> or at -45°C  $(N_1/N_3 : 5/95)$  (method C)<sup>9c</sup>.



| R                               | R <sub>1</sub>  | Solvent  |     | Yield | N l | <sup>N</sup> 3 |
|---------------------------------|-----------------|----------|-----|-------|-----|----------------|
| СН3                             | СН3             | THF      | (A) | 57    | 95  | 5              |
| C6H5                            | CH <sub>3</sub> | THF      | (A) | 64    | 72  | 28             |
| C <sub>6</sub> H <sub>5</sub>   | СНЗ             | THF/HMPT | (B) | 67    | 19  | 81             |
| C <sub>6</sub> H <sub>5</sub>   | CH <sub>3</sub> | THF/HMPT | (C) | 73    | 5   | 95             |
| CIC6H5                          | CH <sub>3</sub> | THF      | (A) | 53    | 94  | 6              |
| C1C6H5                          | СНЗ             | THF/HMPT | (B) | 72    | 15  | 85             |
| C1C6H5                          | tC4H9           | THF      | (A) | 76    | 96  | 4              |
| C1C6H5                          | tC4H9           | THF/HMPT | (B) | 88    | 25  | 75             |
| с1с <sub>6</sub> н <sub>5</sub> | tC4H9           | THF/HMPT | (C) | 55    | 5   | 95             |

Similar observations were done when methyl vinyl ketone was reacted instead of cyclohexenone.

$$C_{6}H_{5}Se - CH - COOMe + CH_{2} = CH - CH_{3} - CH_{2} = CH - CH_{3} + C_{6}H_{5}Se - CH - (CH_{2})_{2}C - CH_{3}$$
  
 $C_{6}H_{5}Se - CH - COOMe + CH_{2} = CH - CH_{3} + C_{6}H_{5}Se - CH - (CH_{2})_{2}C - CH_{3}$   
 $C_{6}H_{5}Se - CH - COOMe + CH_{2} = CH - CH_{3} + C_{6}H_{5}Se - CH - (CH_{2})_{2}C - CH_{3}$ 

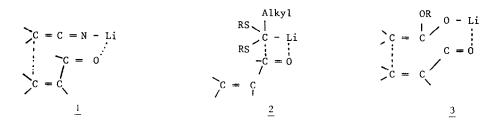

| THF      | (method | A) | 45% overall | 81% | 19% |
|----------|---------|----|-------------|-----|-----|
| THF/HMPT | (method | B) | 44% overall | 15% | 85% |

A question requires an answer : Why these carbanions react regiospecifically  $N_1$  in THF (-78°C, 6 hrs) whereas closely related 1-selenophemyl 1-lithio octanenitrile<sup>5d</sup> or 2-thiophenyl 2-lithio propionate react regiospecifically  $N_3$  in the same solvent at -78°C ? Both the intime structure of the carbanion <sup>6,8</sup> and the stabilization of the negative charge by

Both the intime structure of the carbanion <sup>0,0</sup> and the stabilization of the negative charge by the different groups directly attached to the carbanionic center should account for these re-sults <sup>11</sup>.

Several experiments are designed to understand the first results presented here (only few examples of solvent dependent  $N_1/N_3$  regiospecificity have been already described) 5a-c.

Nevertheless, we have already used the adduct  $\frac{1}{2}$  for the regiospecific synthesis of dienoic ester  $\frac{2}{2}$  <sup>16</sup>.




## References

1. A.G. Schultz and Y.K. Yee, J. Org. Chem., 41, 4044 (1976)

- 2. The structure of "carbanions" α to an ester or a nitrile group can be:sp<sup>3</sup> charge localized carbanion which has been suggested to react under coulombic control or planar sp<sup>2</sup> enolate which is suspected to react under orbital controlled process. The presence of the electronegative chlorine atom in 1-chloro acetate or acetonitrile was suggested to favor the sp<sup>3</sup> structure but the presence of an extra stabilizing group (such as a phenyl) in such a molecule seems to favor the enolate structure.
  - a) G. Kyriakou, A. Loupy and J. Seyden-Penne, J. Chem. Res., in press
  - b) G. Kyriakou, M.C. Roux-Schmitt and J. Seyden-Penne, Tetrahedron, <u>31</u>, 1883 (1975)
  - c) Y. Maroni-Barnaud, M.C. Roux-Schmitt and J. Seyden-Penne, Tet. Lett., 3129 (1974)
- For example, organocopper derivatives have a higher tendency than the corresponding lithium or magnesium analogs to add N<sub>3</sub> to unsaturated ketones. G.H. Posner, Organic Reactions, vol.<u>19</u>
   1 (1972), John Wiley & Sons ed., New York, ISBN 0-471-19619-3
- 4. a) B. Deschamps, Nguyen Trong Anh and J. Seyden-Penne, Tet. Lett., 527 (1973)
  - b) Frontier orbitals and organic chemical reactions, I. Flemming, J. Wiley & Sons, New York (1977, ISBN 04-7101820-1 and references cited
  - c)  $\alpha$ -selenocarbanions add regiospecifically N<sub>1</sub> to  $\alpha,\beta$ -unsaturated ketones, the only exception is the reaction with chalcone (low energy LUMO<sup>4a</sup>) for which N<sub>1</sub> and N<sub>3</sub> modes are simultaneously observed. D.Van Ende and A. Krief, Tet. Lett., 457 (1976)
- 5. a) R. Sauvetre and J. Seyden-Penne, Tet. Lett., 3949 (1976) have shown that  $(C_{6}H_{5}CH-CN)^{-}Li^{+}$ adds to  $\alpha,\beta$ -unsaturated ketones in THF initially in N<sub>1</sub> mode and in N<sub>3</sub> fashion in the presence of HMPT. The kinetically formed compound (N<sub>1</sub> mode) is transformed to the thermodynamic adduct (N<sub>3</sub> mode) on standing.
  - b) 2-phenyl 2-lithio dithiane adds reversibly to cyclohexenones largely N<sub>1</sub> in hexane THF at -78°C but substantial amounts of N<sub>3</sub> adduct are formed irreversibly in THF at -78°C or better at 20°C, P.C. Ostrowski and V.V. Kane, Tet. Lett., 3549 (1977)
  - c) (1-lithio isobutyl) phenyl sulfide, prepared by C-Se bond cleavage in mixed 1-thiophenyl 1-selenophenyl 2-methyl propane adds regiospecifically N<sub>1</sub> (50%) in THF, (W.Dumont and A. Krief, results to be published) and N<sub>3</sub> in THF-HMPT, (T.M. Dolak and T.A. Bryson, Tet. Lett., 1961 (1977))
  - d) 2-lithio 2-selenophenyl octanenitrile adds N<sub>3</sub> to cyclohexenone in THF at -78°C, P.A. Grieco and Y. Yokoyama, J. Amer. Chem. Soc., 99, 5211 (1977)
- 6. G. Stork and L. Maldonado, J. Amer. Chem. Soc., <u>96</u>, 5272 (1974), tentatively explained in these terms the N<sub>3</sub> addition of 1-alcoxy 1-lithio acetonitrile on cyclohexenone (<u>1</u>, ref. 8)
- 7. For similar conclusions :
  - a) B.T. Gröbel and D. Seebach, Synthesis, 357 (1977)
  - b) R. Bürstinghaus and D. Seebach, Chem. Ber., 110, 841 (1977) (2, 3, ref.8)

2700



9. a) Method A

a-selenoacetate  $(10^{-3} \text{ m})$  in THF (1 cc) is added to a lithiumdiisopropylamide (LDA)  $(10^{-3} \text{ m})$  solution in THF (1 cc) at  $-78^{\circ}$ C and stirred for 1.5 hr at this temperature. Cyclohexenone  $(10^{-3} \text{ m})$  in THF (1 cc) is then added dropwise and the resulting solution stirred for 6 hrs at this temperature. Hydrolysis at  $-78^{\circ}$ C is followed by usual work up. All the yields are given for purified products (PLC, ether-pentane : 3:7, rf : 0.4 (N<sub>1</sub>) (two stereoisomers); rf : 0.2 (N<sub>2</sub>)).

b) Method B

a-selemoacetate (10<sup>-3</sup> m) in THF (1 cc) is added to a LDA (10<sup>-3</sup>m) solution in THF (1 cc) at -78°C and stirred for 1.5 hr at this temperature. HMPT (1 cc) is then added (at -78°C) followed by cyclohexenone (10<sup>-3</sup> m) in THF (1 cc) and the resulting solution is stirred for 6 hrs at this temperature. Hydrolysis at -78°C is followed by usual work v

c) Method C

 $\alpha$ -selenoacetate (10<sup>-3</sup> m) in THF (1 cc) is added to a LDA (10<sup>-3</sup> m) solution in THF (1 cc) at -78°C and stirred for 1.5 hr at this temperature. HMPT is added prior to the heating of the solution at -45°C. Cyclohexenone (10<sup>-3</sup> m) in THF is added at this temperature and the resulting solution is stirred at -45°C for 6 hrs prior to hydrolysis at this temperature.

- 10. a) Cyclohexenone is added to the preformed methyl 1-lithio 1-selenophenyl acetate at  $-78^{\circ}$ C After 1 hr : half of the solution is removed and hydrolysed at this temperature leading to 71% reaction (N<sub>1</sub>/N<sub>3</sub> : 95/5). HMPT (1 cc per  $10^{-3}$  m of product) is added to the other half and the temperature is raised to  $-45^{\circ}$ C; hydrolysis was performed after 4.5 hrs. We have 70% yield (N<sub>1</sub>/N<sub>3</sub> : 5/95) b) Same kind of reaction except that half of the reaction is heated at 25°C for one hour before hydrolysis (yield, 72%, N<sub>1</sub>/N<sub>2</sub> : 5/95).
- 11. By calculation  $\frac{12}{10}$  in gas phase it was suggested that selenyl moieties better stabilize an  $\alpha$ -carbanion than the corresponding sulfur analog. However, several experimental result in different solvents THF <sup>13,14</sup>, DMSO <sup>15</sup>, lead to reverse observations.
- 12. J.M. Lehn and G. Wipff, Helv. Chim. Acta, 60, 1239 (1977)
- 13. G. Bernard and A. Krief, results to be publish
- 14. D. Seebach and N. Peleties, Chem. Ber., 105, 511 (1972)
- F.G. Bordwell, J.E. Bares, J.E. Bartness, G.E. Drucker, J. Gerhold, G.J. Mc Collum, M. Van Der Puy, N.R. Vanier and W.S. Mettews, J. Org. Chem., 326 (1977)
- 16. J. Luchetti and A. Krief, accompanying paper and references cited herein.

## Acknowledgments :

The authors are grateful for a fellowship to J. Lucchetti from I.R.S.I.A. (Institut pour la Recherche Scientifique dans l'Industrie et l'Agriculture, Belgium). This work will be included in the Ph.D. Thesis of J. Lucchetti.